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Abstract

We consider the problem of finding a best approximation pair, i.e., two points which achieve

the minimum distance between two closed convex sets in a Hilbert space. When the sets

intersect, the method under consideration, termed AAR for averaged alternating reflections, is

a special instance of an algorithm due to Lions and Mercier for finding a zero of the sum of

two maximal monotone operators. We investigate systematically the asymptotic behavior of

AAR in the general case when the sets do not necessarily intersect and show that the method

produces best approximation pairs provided they exist. Finitely many sets are handled in a

product space, in which case the AAR method is shown to coincide with a special case of

Spingarn’s method of partial inverses.
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1. Introduction

Throughout this paper,

X is a real Hilbert space with inner product /�; �S

and induced norm jj � jj; ð1Þ

and

A and B are two nonempty closed convex

ðpossibly non� intersectingÞ sets in X : ð2Þ

Let I denote the identity operator on X ; and let PA and PB be the projectors (best
approximation operators) onto A and B; respectively. Given a point aAX ; the
standard best approximation problem relative to B is to [16]

find bAB such that jja � bjj ¼ inf jja � Bjj: ð3Þ

A natural extension of this problem is to find a best approximation pair relative to
ðA;BÞ; i.e., to

find ða; bÞAA � B such that jja � bjj ¼ inf jjA � Bjj: ð4Þ

If A ¼ fag; (4) reduces to (3) and its solution is PBa: On the other hand, when the

problem is consistent, i.e., A-Ba|; then (4) reduces to the well-known convex
feasibility problem for two sets [4,13] and its solution set is fðx; xÞAX �
X :xAA-Bg: Formulation (4) captures a wide range of problems in applied
mathematics and engineering [11,24,27,30,35].
The method of alternating projections applied to the sets A and B is perhaps the

most straightforward algorithm to obtain a best approximation pair. It is described
by the algorithm

Take x0AX and set ð8nANÞ xn ¼ ðPAPBÞn
x0: ð5Þ

It was shown in [10, Theorem 2] that if A or B is compact, then the sequence
ðxn;PBxnÞnAN converges in norm to a best approximation pair. Best approximation

pairs may not exist in general. However, if they do, then the sequence generated by
(5) solves (4) in the sense that ðxn;PBxnÞnAN converges weakly to some best

approximation pair. This happens in particular when one of the sets is bounded
[3,11,24].
While simple and elegant, the method of alternating projections can suffer from

slow convergence, as theoretical [5,21] and numerical [12] investigations have shown.
We analyze an alternative strategy based on reflections rather than projections.
Denote the reflectors with respect to A and B by RA ¼ 2PA � I and RB ¼ 2PB � I ;
respectively, and consider the successive approximation method

Take x0AX and set ð8nANÞ xn ¼ Tnx0; ð6Þ

where

T ¼ 1
2
ðRARB þ IÞ: ð7Þ
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In this algorithm, the sets A and B are activated in an alternating fashion through
reflection operations. Since the update is formed by averaging the current iterate
with the composition of the two reflections, we refer to (6)–(7) as the averaged

alternating reflections (AAR) method.

Let us now motivate this method from four different viewpoints. 1) If A-Ba|;
then the AAR method is a special case of a nonlinear variant of the Douglas–
Rachford algorithm [17] proposed by Lions and Mercier in [26] to find a zero of the
sum of two maximal monotone operators (in our setting, the normal cone maps of A

and B). 2) In [7], we have used a relaxed version of (6)–(7), which we called the
hybrid projection–reflection (HPR) method, to solve the nonconvex phase retrieval
problem in imaging. This algorithm was inspired by our attempt to use reliable
convex optimization techniques as a basis to analyze current state-of-the-art
techniques in phase retrieval [6]. Projection-type algorithms have been used in
computational phase retrieval for over 30 years. During this period, an algorithm
that is similar to the AAR method—known in the optics community as hybrid
input–output (HIO)—has emerged as the preferred algorithm for iterative phase
retrieval; in contrast, alternating projections often do not converge to an acceptable
neighborhood of the solution, and, even when they do, it can take over a thousand
times the number of iterations required for HIO or other AAR-type algorithms [20].
3) If B is the Cartesian product of finitely many halfspaces and A is the diagonal
subspace of the corresponding product space, then the AAR method coincides with
Spingarn’s method of partial inverses for solving linear inequalities (see Section 4 for
further details). On page 61 of [33], this method is reported to be more advantageous
numerically than cyclic projections for certain problems. 4) The following simple
example in the Euclidean plane illustrates a convex feasibility problem in which the
AAR method exhibits better convergence behavior than the method of alternating

projections. Let A ¼ fðr; sÞAR2 : sp0g; B ¼ fðr; sÞAR2 : rpsg; and fix x0 ¼ ð8; 4Þ as
a starting point for the sequence ðxnÞnAN generated the AAR method (6)–(7). Then

x1 ¼ ð6;�2Þ; x2 ¼ ð2;�4Þ; x3 ¼ ð�1;�3Þ; and x4 ¼ xn ¼ ð�2;�2Þ; for every nX4:
Thus the AAR method finds the point ð�2;�2ÞAA-B in four iterations. On the
other hand, the sequence generated by the method of alternating projections (5) with
the same starting point (8,4) converges to ð0; 0ÞAA-B; but not in finitely many
steps.
We now recall the known convergence results for the AAR method.

Fact 1.1. Suppose that A-Ba| and let ðxnÞnAN be an arbitrary sequence generated by

(6) and (7). Then the following hold.

(i) ðxnÞnAN converges weakly to some fixed point x of T and PBxAA-B:

(ii) The ‘‘shadow’’ sequence ðPBxnÞnAN is bounded and each of its weak cluster points

belongs to A-B:

Proof. See [26, Theorem 1] (specialized to the normal cone maps of A and B), or the
more direct proof of [6, Fact 5.9]. &
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The aim of this paper is to analyze completely the asymptotic behavior of the

AAR method (6)–(7), covering in particular the case when A-B ¼ |: In addition, we
shall briefly explore extensions of our main results to the setting of finitely many sets.
The paper is organized as follows. We provide basic facts on the geometry of two

closed convex sets in Section 2. In Section 3, we show that, for any sequence ðxnÞnAN

generated by (6) and (7), either jjPBxnjj-þN and (4) has no solution, or
ððPARBxn;PBxnÞÞnAN is bounded and its weak cluster points are solutions of (4).

Additional results are presented for the case when A is a linear subspace. This is of
relevance in Section 4, where finitely many sets are handled in a product space. We
conclude by establishing a connection with Spingarn’s method of partial inverses
[32–34].

Notation. The closure of a set CCX is denoted by C and its interior by int C; its
recession cone is recðCÞ ¼ fxAX :x þ CCCg (note that rec | ¼ X ) and its normal
cone map is given by

NC : x/
fuAX : ð8cACÞ/c � x; uSp0g if xAC;

| otherwise:

�

If C is a convex cone, its polar cone is C~ ¼ fxAX : ð8cACÞ/c; xSp0g and C" ¼
�C~: The range of an operator T is denoted by ran T (with closure ran T) and its
fixed point set by Fix T : Finally, , denotes weak convergence and N is the set of
nonnegative integers.

2. The geometry of two closed convex sets

Recall (see [22, Theorem 12.1]) that an operator T̃ from X to X is firmly

nonexpansive, i.e.,

ð8xAXÞð8yAXÞ jjT̃x � T̃yjj2 þ jjðI � T̃Þx � ðI � T̃Þyjj2pjjx � yjj2; ð8Þ

if and only if R̃ ¼ 2T̃ � I is nonexpansive, i.e.,

ð8xAXÞð8yAXÞ jjR̃x � R̃yjjpjjx � yjj: ð9Þ

Fact 2.1. Suppose that C is a nonempty closed convex set in X : Then, for every point

xAX ; there exists a unique point PCxAC such that jjx � PCxjj ¼ inf jjx � Cjj: The

point PCx is characterized by

PCxAC and ð8cACÞ /c � PCx; x � PCxSp0: ð10Þ

The operator PC : X-C : x/PCx is called the projector onto C; it is firmly

nonexpansive and consequently, the reflector RC ¼ 2PC � I is nonexpansive.
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Proof. See [16, Theorems 4.1 and 5.5]; [22, Chap. 12]; [23, Propositions 3.5 and 11.2];
or [36, Lemma 1.1]. &

Fact 2.2. Suppose that C is a nonempty closed convex set in X : Then ranðI � PCÞ ¼
ðrecðCÞÞ~:

Proof. See [36, Theorem 3.1]. &

In order to study the geometry of the given two closed convex sets A and B;
it is convenient to introduce the following objects, which we use throughout
the paper:

D ¼ B � A; v ¼ PDð0Þ; E ¼ A-ðB � vÞ; and F ¼ ðA þ vÞ-B: ð11Þ

It follows at once from (10) that

�vANDðvÞ: ð12Þ

Note also that if A-Ba|; then E ¼ F ¼ A-B: However, even when A-B ¼ |; the
sets E and F may be nonempty and they serve as substitutes for the intersection.
Indeed, jjvjj measures the ‘‘gap’’ between the sets A and B:

Fact 2.3.

(i) jjvjj ¼ inf jjA � Bjj; and the infimum is attained if and only if vAB � A:
(ii) E ¼ FixðPAPBÞ and F ¼ FixðPBPAÞ:
(iii) E þ v ¼ F :
(iv) If eAE and fAF ; then PBe ¼ PF e ¼ e þ v and PAf ¼ PEf ¼ f � v:
(v) E and F are nonempty provided one of the following conditions holds:

(a) A-Ba|:
(b) B � A is closed.
(c) A or B is bounded.
(d) A and B are polyhedral sets (intersections of finitely many halfspaces).
(e) recðAÞ-recðBÞ is a linear subspace, and A or B is locally compact.

Proof. See [2, Section 5, 3, Section 2]. &

Proposition 2.4. Suppose that fAF and yANDðvÞ; and set e ¼ f � vAE: Then the

following hold:

(i) NDðvÞ ¼ NBð f Þ-ð�NAðeÞÞ:
(ii) PBð f þ yÞ ¼ f :
(iii) PAðe � yÞ ¼ e:

Proof. Condition (i) follows from (11). Conditions (ii) and (iii) follow from (i)
and (10). &
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Proposition 2.5. Suppose that ðanÞnAN and ðbnÞnAN are sequences in A and B;

respectively. Then

bn � an-v 3 jjbn � anjj-jjvjj: ð13Þ
Now assume that bn � an-v: Then the following hold:

(i) bn � PAbn-v and PBan � an-v:
(ii) The weak cluster points of ðanÞnAN and ðPAbnÞnAN (resp. ðbnÞnAN and ðPBanÞnAN)

belong to E (resp. F ). Consequently, the weak cluster points of the sequences

ððan; bnÞÞnAN; ððan;PBanÞÞnAN; ððPAbn; bnÞÞnAN

are best approximation pairs relative to ðA;BÞ:
(iii) If E ¼ | (or, equivalently, F ¼ |), then minfjjanjj; jjPAbnjj; jjbnjj; jjPBanjjg-þN:

Proof. Implication ‘‘)’’ is clear. Conversely, let ð8nANÞ dn ¼ bn � anAB �
ACB � A ¼ D: It follows from (10) that ð8nANÞ /dn � v; vSX0: Hence

ð8nANÞ jjdnjj2 � jjvjj2 ¼ jjdn � vjj2 þ 2/dn � v; vSXjjdn � vjj2; ð14Þ
which proves (13). Assume for the remainder of the proof that bn � an-v or,
equivalently, jjbn � anjj-jjvjj: Since

ð8nANÞ jjbn � anjjXmaxfjjbn � PAbnjj; jjPBan � anjjg

Xminfjjbn � PAbnjj; jjPBan � anjjg

X jjvjj;
we conclude that ðjjbn � PAbnjjÞnAN and ðjjPBan � anjjÞnAN both converge to jjvjj: As
just proved, this now yields bn � PAbn-v and PBan � an-v: Hence (i) holds. Let
aAA be a weak cluster point of ðanÞnAN; say akn

,a: Then bkn
,v þ aAB-ðv þ AÞ ¼

F : Hence aAA-ðB � vÞ ¼ E: The remaining three sequences are treated similarly
and thus (ii) is verified. Finally, (iii) is a direct consequence of (ii). &

Remark 2.6. Sequences conforming to the assumptions described in Proposition 2.5
can be generated by (5), upon rewriting it as

Take b�1AB and set ð8nANÞ an ¼ PAbn�1 and bn ¼ PBan: ð15Þ
Indeed, Ref. [3, Theorem 4.8] implies that bn � an-v (see also [11]). This happens
also for the iterates generated by Dykstra’s algorithm [3, Theorem 3.8]. In Theorem
3.13, we shall see that the AAR method also gives rise to sequences with this
behavior.

Corollary 2.7. vAðPB � IÞðAÞ-ðI � PAÞðBÞCðrec BÞ"-ðrec AÞ~:

Proof. In view of Proposition 2.5(i) and Remark 2.6,

vAðPB � IÞðAÞ-ðI � PAÞðBÞCranðPB � IÞ-ranðI � PAÞ: ð16Þ
Now apply Fact 2.2. &
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Remark 2.8. Corollary 2.7 can be refined in certain cases.

(i) First assume that A ¼ a þ K and B ¼ b þ L; where K and L are closed convex

cones. Then recðAÞ ¼ K and recðBÞ ¼ L: Hence, by Corollary 2.7, vAL"-K~:
In fact, [2, Example 2.2] shows that

v ¼ PL"-K~ðb � aÞ:

(ii) Now assume that A is a closed affine subspace, say A ¼ a þ K ; where K is a
closed linear subspace. Then K ¼ A � A and hence

vAðA � AÞ>:

3. The averaged alternating reflections (AAR) method

Let us start with a key observation concerning the operator T ¼ ðRARB þ IÞ=2:

Proposition 3.1. T is firmly nonexpansive and defined on X :

Proof. By Fact 2.1, the projectors PA and PB are firmly nonexpansive. As pointed
out in the beginning of Section 2, the corresponding reflectors RA and RB are
nonexpansive. It follows that RARB is nonexpansive as well and, hence, that T is
firmly nonexpansive. &

Several fundamental results on firmly nonexpansive maps have been
discovered over the past four decades. Specializing these to T ; we obtain the
following.

Fact 3.2. Let x0AX : Then:

(i) ðTnx0 � Tnþ1x0ÞnAN converges in norm to the unique element of minimum norm in

ranðI � TÞ;
(ii) Fix Ta| 3 ðTnx0ÞnAN converges weakly to some point in Fix T ;
(iii) Fix T ¼ | 3 jjTnx0jj-þN:

Proof. (See also [9].) (i) See [1, Corollary 2.3; 29, Corollary 2]. (ii) See [28, Theorem
3]. (iii) See [1, Corollary 2.2]. &

The following identities will be useful later.

Proposition 3.3. Let xAX : Then:

(i) x � Tx ¼ PBx � PARBx;
(ii) jjx � Txjj2 ¼ jjx � PBxjj2 þ/x � PARBx;RBx � PARBxS:
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Proof. Indeed,

x � Tx ¼ x � 1
2 ðRARBx þ xÞ ¼ 1

2 ðx � 2PARBx þ RBxÞ

¼ 1
2
ðx � 2PARBx þ 2PBx � xÞ ¼ PBx � PARBx:

Hence (i) holds, and we obtain further

jjx � Txjj2 ¼ jjPBx � PARBxjj2

¼ jjPBx � xjj2 þ jjx � PARBxjj2 þ 2/x � PARBx;PBx � xS

¼ jjPBx � xjj2 þ jjx � PARBxjj2 þ/x � PARBx;RBx � xS

¼ jjPBx � xjj2 þ jjx � PARBxjj2 þ/x � PARBx; ðRBx � PARBxÞ

� ðx � PARBxÞS

¼ jjPBx � xjj2 þ/x � PARBx;RBx � PARBxS;

as announced in (ii). &

Theorem 3.4. The unique element of minimum norm in ranðI � TÞ is v:

Proof. It follows from Fact 3.2(i) that ranðI � TÞ possesses a unique element of
minimum norm, say w: We shall show that w ¼ v: On the one hand, by Proposition

3.3(i), we have ranðI � TÞCB � A and hence wAB � A ¼ D: On the other hand, it
follows from Proposition 3.3(ii) and (10) that, for every aAA;

jjwjj2p jja � Tajj2 ¼ jjPBa � ajj2 þ/a � PARBa;RBa � PARBaS

p jjPBa � ajj2 ¼ inf jjB � ajj2:
Hence jjwjjpinf jjB � Ajj and, therefore, w ¼ PD0 ¼ v: &

Theorem 3.5. The set FixðT þ vÞ is closed and convex. Moreover,

F þ NDðvÞCFixðT þ vÞCv þ F þ NDðvÞ: ð17Þ

Proof. Since T is firmly nonexpansive, so is T þ v: Hence FixðT þ vÞ is closed and
convex (see, for instance, [22, Lemma 3.4] or [23, Proposition 5.3]). Now pick fAF ;
yANDðvÞ; and set x ¼ f þ y: By Proposition 2.4(ii), we have PBx ¼ f : Hence RBx ¼
2PBx � x ¼ 2f � ð f þ yÞ ¼ f � y: Now, let e ¼ f � v: It follows from (12) that y �
vANDðvÞ: Therefore, using Proposition 2.4(iii), we obtain PARBx ¼ PAð f � yÞ ¼
PAðe � ð y � vÞÞ ¼ e ¼ f � v: Hence PBx � PARBx ¼ f � ð f � vÞ ¼ v: By Proposi-
tion 3.3(i), x � Tx ¼ PBx � PARBx ¼ v and, in turn, x ¼ Tx þ v; i.e., xAFixðT þ vÞ:
Thus,

F þ NDðvÞCFixðT þ vÞ: ð18Þ
To establish the remaining inclusion, pick xAFixðT þ vÞ: Then x � Tx ¼ v or,
equivalently (see Proposition 3.3), PBx � PARBx ¼ v: Let f ¼ PBx ¼ v þ PARBx and
y ¼ x � v � f : Then fAB-ðA þ vÞ ¼ F and x ¼ v þ f þ y: It now suffices to show
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that yANDðvÞ: To see this, pick aAA and bAB: On the one hand, since f ¼ PBx; Fact
2.1 results in /b � f ; x � fSp0: Using the definition of y; we write the last
inequality equivalently as

/b � f ; y þ vSp0: ð19Þ

On the other hand, PAð2f � xÞ ¼ PAð2PBx � xÞ ¼ PARBx ¼ f � v:Again using Fact
2.1, we deduce /a � f þ v;�yS ¼ /a � ð f � vÞ; ð2f � xÞ � ð f � vÞSp0: Hence

/ f � a � v; ySp0: ð20Þ

Adding (19) and (20), we obtain /b � a � v; ySþ/b � f ; vSp0: This inequality,
(12), Proposition 2.4(ii), and Fact 2.1 now yield /b � a � v; ySp/b � f ;�vS ¼
/b � f ; ð f � vÞ � fSp0: We conclude that yANDðvÞ: &

Remark 3.6. A little care with (17) shows that recðFÞ þ NDðvÞCrecðFixðT þ vÞÞ: In
particular, if Fa|; then �vArecðFixðT þ vÞÞ (use (12)).

The next two examples illustrate that the bracketing given for FixðT þ vÞ in
Theorem 3.5 is tight.

Example 3.7. Let X ¼ R; A ¼ f0g; and B ¼ 1;þN½ ½: Then D ¼ B; v ¼ 1; F ¼ f1g;
and FixðT þ vÞ ¼ F þ NDðvÞ:

Example 3.8. Let X ¼ R; A ¼ ½1;þN½; and B ¼ f0g: Then D ¼� �N;�1�; v ¼ �1;
F ¼ B; and FixðT þ vÞ ¼ v þ F þ NDðvÞ:

The following result, which improves upon [6, Fact A1], gives a complete
description of Fix T in the consistent case.

Corollary 3.9. Suppose that A-Ba|: Then Fix T ¼ ðA-BÞ þ NDð0Þ and

PBðFix TÞ ¼ A-B:

Proof. Since A-Ba|; we have v ¼ 0 and F ¼ A-B: The formula for Fix T (resp.
PBðFix TÞ) follows from Theorem 3.5 (resp. Proposition 2.4(ii)). &

Remark 3.10. We show that if the sets A and B do not ‘‘overlap sufficiently’’, then
Fix T may be strictly larger than A-B: Indeed, let X ¼ R; A ¼ f0g; and B ¼
0;þN½ ½: Then D ¼ B; v ¼ 0; F ¼ f0g ¼ A-B; yet Fix T ¼ �N; 0� �: This simple
example shows that iterating T alone may not yield a point in A-B: Hence it is
important to monitor the ‘‘shadow sequence’’ ðPBTnx0ÞnAN; see Fact 1.1 and

Theorem 3.13.

Remark 3.11. If 0AintðB � AÞ (a fortiori if the Slater-type condition

ðA-intðBÞÞ,ðB-intðAÞÞa| holds), then NDð0Þ ¼ f0g and consequently (Corollary
3.9) Fix T ¼ A-B:
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Lemma 3.12. Suppose that Fa|; let y0AFixðT þ vÞ and set yn ¼ Tny0; for all nAN:
Then ð ynÞnAN ¼ ð y0 � nvÞnAN lies in FixðT þ vÞ: Moreover,

ð8nANÞ jjxnþ1 � y0 þ ðn þ 1Þvjj2 þ jjxn � xnþ1 � vjj2pjjxn � y0 þ nvjj2: ð21Þ

Proof. The proof proceeds by induction on n: Clearly, y0 � 0v ¼ y0AFixðT þ vÞ:
Now assume that yn ¼ y0 � nvAFixðT þ vÞ; for some nAN: Then y0 � nv ¼ yn ¼
ðT þ vÞð ynÞ ¼ Tyn þ v ¼ ynþ1 þ v and hence ynþ1 ¼ y0 � ðn þ 1Þv: Moreover, (17) is
precisely what is needed to show that ynþ1AFixðT þ vÞ: Hence the claims regarding
ð ynÞnAN are proven. Next, (21) follows from the firm nonexpansiveness of T

(Proposition 3.1) applied to xn and yn ¼ y0 � nv: &

Theorem 3.13 (AAR method). Let x0AX and set xn ¼ Tnx0; for all nAN: Then the

following hold.

(i) xn � xnþ1 ¼ PBxn � PARBxn-v and PBxn � PAPBxn-v:
(ii) If A-Ba|; then ðxnÞnAN converges weakly to a point in FixðTÞ ¼ ðA-BÞ þ

NDð0Þ; otherwise, jjxnjj-þN:
(iii) Exactly one of the following two alternatives holds.

(a) F ¼ |; jjPBxnjj-þN; and jjPAPBxnjj-þN:
(b) Fa|; the sequences ðPBxnÞnAN and ðPAPBxnÞnAN are bounded, and their

weak cluster points belong to F and E; respectively; in fact, the weak cluster

points of

ððPARBxn;PBxnÞÞnAN and ððPAPBxn;PBxnÞÞnAN ð22Þ
are best approximation pairs relative to ðA;BÞ:

Proof. (i): On the one hand, Proposition 3.3(i) yields

ð8nANÞ xn � xnþ1 ¼ xn � Txn ¼ PBxn � PARBxn: ð23Þ

On the other hand, Fact 3.2(i) and Theorem 3.4 imply

xn � xnþ1 ¼ Tnx0 � Tnþ1x0-v: ð24Þ

Altogether, we obtain the first claim and, by Proposition 2.5(i), PBxn � PAPBxn-v:
(ii): This follows immediately from items (ii) and (iii) in Fact 3.2 as well as from

Corollary 3.9. (iii): If F ¼ |; then (i) and Proposition 2.5(iii) yield jjPBxnjj-þN

and jjPAPBxnjj-þN: Now assume that Fa|: We claim that ðPBxnÞnAN is

bounded. Indeed, fix fAFCFixðT þ vÞ (see Theorem 3.5). Repeated use of (21) (with
y0 ¼ f ) in Lemma 3.12 yields jjxn � ð f � nvÞjjpjjx0 � f jj; for all nAN: Also, since
PBð f � nvÞ ¼ f (Proposition 2.4(ii)) and PB is nonexpansive (Fact 2.1), we have

ð8nANÞ jjPBxn � f jj ¼ jjPBxn � PBð f � nvÞjjpjjxn � ð f � nvÞjjpjjx0 � f jj:

Hence ðPBxnÞnAN is bounded. The remaining statements regarding the weak cluster

points now follow from (i) and Proposition 2.5(ii). &
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Remark 3.14. The conclusions of Theorem 3.13 can be strengthened provided A or B

has additional properties:

(i) Best approximation pairs exist and can be found as described in Theorem
3.13(iii)(b) whenever (at least) one of the conditions listed in Fact 2.3(v) is
satisfied.

(ii) Suppose that best approximation pairs relative to ðA;BÞ exist, i.e., Fa|: If PB is
weakly continuous (as is the case when X is finite-dimensional or B is a closed
affine subspace), then ððPARBxn;PBxnÞÞnAN and ððPAPBxn;PBxnÞÞnAN both

converge weakly to such a pair.

We shall discuss the important case when A is an affine or linear subspace in
Theorem 3.17 and Proposition 3.19.

Remark 3.15. If x0AX and y0AFixðT þ vÞ; then (21) implies that ðjjTnx0 þ nv �
y0jjÞnAN is decreasing. Consequently, ðTnx0 þ nvÞnAN is Fejér monotone with respect

to FixðT þ vÞ: In certain settings, Fejér monotonicity sheds further light on the

behavior of the sequence ðTnx0 þ nvÞnAN: For instance, if int FixðT þ vÞa|; then
ðTnx0 þ nvÞnAN must converge in norm. See [4,14] for this and further properties.

Remark 3.16. Pick x0AX and set xn ¼ Tnx0; for every nAN:

(i) Theorem 3.13(i) states that PBxn � PAPBxn-v: Hence, using Fact 2.3(i),

ðdnÞnAN ¼ ðjjPBxn � PAPBxnjj2ÞnAN converges to jjvjj2 ¼ inf jjA � Bjj2; the

(squared) gap between A and B: In [7, Section 4], a normalized version of dn

was employed as a stopping criterion and error measure in an application of the
AAR method to image processing.

(ii) By [29, Corollary 2], xn=n-� v: Hence, one can monitor the value
of jjxn=njj during the execution of the AAR method as an approximation of
the gap jjvjj:

Theorem 3.17 (When A is an affine subspace). Suppose that A is a closed affine

subspace and x0AX : Let xn ¼ Tnx0; for all nAN: Then

PBxn � PAxn-v: ð25Þ

If Fa|; then ðPAxnÞnAN is bounded and its weak cluster points belong to E: If

furthermore A-Ba|; then ðxnÞnAN converges weakly to some point xAðA-BÞ þ
NDð0Þ: Moreover, ðPAxnÞnAN and ðPBxnÞnAN converge weakly to PAxAA-B:

Proof. Since A is an affine subspace, PA is an affine operator. It follows that PARB ¼
PAðPB þ PB � IÞ ¼ PAPB þ PAPB � PA ¼ 2PAPB � PA and hence PB � PARB ¼
PB þ PA � 2PAPB ¼ 2ðPB � PAPBÞ þ PA � PB: In turn, this implies

PB � PA ¼ 2ðPB � PAPBÞ � ðPB � PARBÞ: ð26Þ
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Now apply (26) to ðxnÞnAN; invoke Theorem 3.13(i), and deduce that

PBxn � PAxn-v: If Fa|; then ðPBxnÞnAN is bounded (Theorem 3.13(iii)(b)).

Consequently, (25) implies that ðPAxnÞnAN is bounded and that every weak

cluster point of ðPAxnÞnAN belongs to E (Proposition 2.5(ii)). Now assume

that A-Ba|; whence v ¼ 0 and E ¼ F ¼ A-B: It follows from Theorem 3.13(ii)
that xn,xAðA-BÞ þ NDð0Þ: Since PA is weakly continuous, we have
PAxn,PAx: By (25) and the weak closedness of B; we conclude that
PBxn,PAxAA-B: &

Remark 3.18. The convergence statement (25) need not hold if A is not an affine
subspace: indeed, if x0 ¼ 0 in Example 3.8, then PBxn � PAxn ¼ �maxf1; ng-�N:

When A is a linear subspace, an additional property complements the results of
Theorem 3.17.

Proposition 3.19 (When A is a linear subspace). Suppose that A is a closed linear

subspace. Then PAðFixðT þ vÞÞ ¼ E: If A-Ba|; then PAðFixðTÞÞ ¼ A-B:

Proof. In view of Theorem 3.5 and Fact 2.3(iii), we may assume that Ea|: Pick
eAE: Adding A> to (17) yields

F þ NDðvÞ þ A>CFixðT þ vÞ þ A>Cv þ F þ NDðvÞ þ A>: ð27Þ

On the other hand, vAA> (Remark 2.8(ii)) and NDðvÞC� NAðeÞ ¼ A> (Proposition

2.4(i)). Hence (27) implies F þ A> ¼ FixðT þ vÞ: Together with Fact 2.3(iv), this

yields PAðFixðT þ vÞÞ ¼ E: Now suppose A-Ba|: By (11), v ¼ 0 and E ¼ A-B:
Therefore, PAðFixðT þ vÞÞ ¼ E becomes PAðFixðTÞÞ ¼ A-B: &

We conclude this section with another special case.

Remark 3.20. Suppose that A is an obtuse cone, i.e., A"CA: Pick x0AA

and set xn ¼ Tnx0; for all nAN: Since ran RA ¼ A [8], the entire sequence ðxnÞnAN

lies in A:

4. Finitely many sets

In this final section, we show how one can adapt the two-set results of Section 3 to
problems with finitely many sets. We assume that

C1;y;CJ are finitely many nonempty closed convex sets in X : ð28Þ

The following product space technique was first introduced in [31]. Pick ðljÞ1pjpJ in

0; 1½ � such that
PJ

j¼1lj ¼ 1 and denote by X the Hilbert space obtained by equipping
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the Cartesian product X J with the inner product ððxjÞ1pjpJ ; ð yjÞ1pjpJÞ/PJ
j¼1lj/xj; yjS: Let

A ¼ fðx;y; xÞAX : xAXg and B ¼ C1 �?� CJ : ð29Þ

Then the set
TJ

j¼1 Cj in X corresponds to the set A-B in X: Moreover, the

projections of x ¼ ðxjÞ1pjpJAX onto A and B are given by

PAx ¼
XJ

j¼1
ljxj;y;

XJ

j¼1
ljxj

 !
and PBx ¼ ðPC1

x1;y;PCJ
xJÞ; ð30Þ

respectively. By analogy with (11), we now set

D ¼ B� A; v ¼ PDð0Þ; E ¼ A-ðB� vÞ; and F ¼ ðAþ vÞ-B: ð31Þ

Then a point ðe;y; eÞAX belongs to E if and only if e minimizes the proximity
function

x/
XJ

j¼1
ljjjx � PCj

xjj2 ð32Þ

or, equivalently, if eAFix
PJ

j¼1 ljPCj
(see [3,11,15] for details). Further, let

T ¼ 1
2
ðRARB þ IÞ; ð33Þ

fix x0AA; and set xn ¼ Tnx0; for all nAN: Then we obtain the AAR method in X for
the two sets A and B and, as seen in Remark 3.10, the pertinent sequence to monitor
is the ‘‘shadow sequence’’ ðPBxnÞnAN: The results of Section 3 can be applied to this

product space setting which, in turn, yield new convergence results for algorithms
operating in the original space X via (30). Rather than detailing these counterparts,
we shall bring to light a particularly interesting connection with Spingarn’s method
of partial inverses [32] (see also [18,19,25]).

Remark 4.1 (Spingarn’s method of partial inverses). Since A is a closed linear
subspace, Theorem 3.17 is applicable and one can thus monitor the sequence
ðPBxnÞnAN or the sequence ðPAxnÞnAN: The latter corresponds precisely to Spingarn’s

method of partial inverses for finding a zero of
PJ

j¼1 ljNCj
¼
PJ

j¼1 NCj
; i.e., for

finding a point in
TJ

j¼1 Cj; see [32, Section 6]. It is noteworthy that the main

convergence result of Spingarn [32, Corollary 5.1] in this setting can also be deduced
from Theorem 3.13 and Proposition 3.19.

Spingarn analyzed further the case when X is a Euclidean space and each set Cj is

a halfspace in [33,34]. Specifically, he proved that Fa| (this can also be deduced
from Fact 2.3(v)(d)), that ðPAxnÞnAN converges linearly to some point in E [34,

Theorems 1 and 2], and that convergence occurs in finitely many steps provided that

int
TJ

j¼1 Cja| [33, Theorem 2].
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